

Mark Scheme (Results)

November 2021

Pearson Edexcel International GCSE In Mathematics B (4MB1) Paper 02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Question Paper Log Number P66022RA
Publications Code 4MB1_02_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If the final answer is wrong always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used.

If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

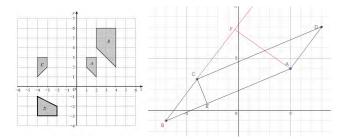
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Ques	Working	Answer	Mark	Notes
1 (a)			3	M1 for line $x + y = 8$ correct (between $x = 4$ and $x = 6$ at least) Condone dashed line
				M1 for lines $x = y$ (between $x = 2$ and $x = 4$ at least) and $y = 2$ (between $x = 2$ and $x = 6$ at least) drawn correctly. Condone dashed line
	3A 9- 6- 5- 4- 3- 2- 1- 1- 2- 1- 2- 1- 2- 1- 2- 1- 2- 1- 1- 2- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1	Correct region indicated		A1 both method marks must be awarded. Mark the area labelled <i>R</i> . If no area is labelled allow if the area required is shaded in or out.
(b)			2	M1 for line $2y - x = 2$ drawn (between $x = 2$ and $x = 4$ at least) or for one correct pair of coordinates if all the given co-ordinates are on the line $y = \frac{x+2}{2}$ eg (3, 2.5) or (5, 3.5) or (6, 4) or $\left(\frac{14}{3}, \frac{10}{3}\right)$
		(2, 2), (4, 3)		A1 both coordinates and no extras. Condone missing brackets Allow written as $x = 2$, $y = 2$ and $x = 4$, $y = 3$ if pairing is clear.
				Total 5 marks

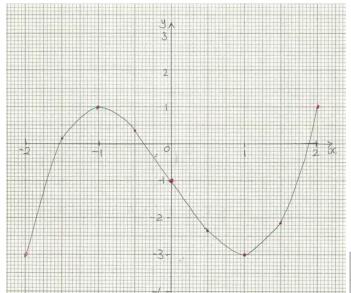

Ques	Working	Answer	Mark	Notes
2 (a)	$\sqrt{12^2 - 5^2}$ [= $\sqrt{119}$ =10.9] or		4	M1 for correct method to find height of a triangular side or angle
	$\sqrt{12^2 - 4^2} = \sqrt{128} = 8\sqrt{2} = 11.3$ or			BEC or angle AEB or angle ECB or angle EBC or angle EBA or
	. [4 4] -			angle EAB oe This may be implied by a correct expression or
	$[\angle AEB =]\cos^{-1}\left(\frac{12^2 + 12^2 - 8^2}{2 \times 12 \times 12}\right) [= 38.9^{\circ}] \text{ or }$			area for triangle AEB or ECB.
	$\frac{2\times12\times12}{2\times12\times12}$			ALT
	$\left[\angle AEB = \right] 2 \times \sin^{-1}\left(\frac{4}{12}\right) \mathbf{or}$			$[\angle ECB = \angle EBC =] \cos^{-1} \left(\frac{12^2 + 10^2 - 12^2}{2 \times 12 \times 10} \right) [= 65.4^{\circ}]$
	$[\angle BEC =]\cos^{-1}\left(\frac{12^2 + 12^2 - 10^2}{2 \times 12 \times 12}\right)[49.2^\circ]$ or			$[\angle EBA = \angle EAB =] \cos^{-1} \left(\frac{12^2 + 8^2 - 12^2}{2 \times 12 \times 8} \right) [= 70.5^{\circ}]$
	$\left[\angle BEC = \right] 2 \times \sin^{-1} \left(\frac{5}{12}\right)$			Allow all written in form $\cos \dots = \left(\frac{12^2 + 10^2 - 12^2}{2 \times 12 \times 10}\right)$
	$0.5 \times 10 \times "10.9"$ or			M1 ft their height of the triangles.
	$0.5 \times 12 \times 12 \times \sin^4 49.2^{\circ}$ or			For area of triangle $AEB = 45.2$ NB $12 \sin 65.4 = 10.9$
	$0.5 \times 8 \times "11.3"$ or			or triangle BEC [= 54.5] NB 12sin"70.5" = 11.3 This may
	$0.5 \times 12 \times 12 \times \sin"38.9"^{\circ}$			be embedded in an expression for total area
	M1 for $8 \times 10 + 2 \times "54.5" + 2 \times "45.2"$			M1 indep For $8 \times 10 + 2 \times z + 2 \times y$ where $z \neq y$
		280 (cm ²)		A1 279 – 280 (inclusive)
(b)	$[PO =]\sqrt{4^2 + 5^2} [= \sqrt{41}]$. /	4	M1 a correct method to find PQ Allow $\sqrt{41}$ or awrt 6.40 seen -
	[IQ-]V+J[-V+I]			ignore labelling
	$("\sqrt{41}")^2 = "10.9"^2 + "11.3"^2 - 2 \times "10.9" \times "11.3" \times \cos E$			M1 a correct equation to find $\angle PEQ$. Allow use of their values for
				EP and EQ either from part (a) or from this part. ft their PQ.
	oe (, , , , , , , , , , , , , , , , , ,			2 1 1 2
	$\left("10.9"^2 + "11.3"^2 - \left(\sqrt{41} \right)^2 \right)$			M1 dep on previous method mark being awarded. A correct method to find $\angle PEQ$. Allow use of their values for EP and EQ either
	$\cos \angle PEQ = \left \frac{"10.9"^2 + "11.3"^2 - (\sqrt{41})}{2 \times "10.9" \times "11.3"} \right $			
				from part (a) or from this part if they are clearly labelled. Allow
				other letters for P and Q if clear on diagram

3 (a)	(200 + 1) ÷ 2 (=100.5) or 100th	33.4 5 < t ≤ 15	2	Allow $\cos^{-1}\left(\frac{"10.9"^2 + "11.3"^2 - \left("\sqrt{41}"\right)^2}{2 \times "10.9" \times "11.3"}\right)$ A1 33.4 – 33.5 Total 8 marks M1 Allow 101 May be implied by correct answer A1 Condone \leq for $<$ and vice versa
(b)	2.5×28 + 10×74 + 25×42 + 42.5×36 + 62.5×20 (= 70 + 740 + 1050 + 1530 + 1250 = 4640) "4640" ÷ 200		4	M2 for at least 3 correct products added (need not be evaluated) (M1 for consistent use of a value within interval (incl end points) for at least 3 products which must be added OR correct mid-points used for at least 3 products but not added) M1 dep on at least M1 previously scored. For dividing their sum by
		23.2	_	A1 (allow 23 from correct working) Allow $\frac{116}{5}$ oe
(c)	FDs: 28÷5 (=5.6), 74÷10 (=7.4), 42÷20 (=2.1), 36÷15 (=2.4), 20÷25 (=0.8)		3	M2 for correct methods to find at least 4 of the FD which may be on graph (M1 for at least 2 FDs which may be on graph) If there is not a scale on the <i>y</i> -axis we will allow if the bars are drawn at the correct height, in relation to the bar for $5 < t \le 15$
				A1 completely correct histogram. A correct scale with at least one
				correct value on the y-axis
				Total 9 marks

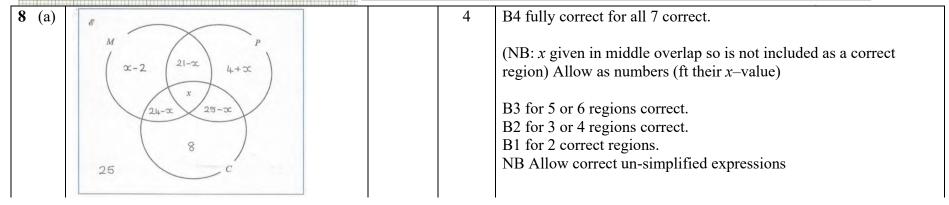
4 (a)	0.55 × 320 (=176) or 0.45 × 320 (=144) oe		4	M1 Correct method to find the number of chutney) sold. Allow 176 or 144 seen	of jars of jam or (honey +
	$(320 - "176") \div (5 + 3)$ [=18] oe or $(320 - "176") \times 3$ [= 432]oe			M1 ft "their 176" or "their 144" rather than 320 – "176"	M2 for $\frac{3}{8}$ × (320 – "176")
	"18" \times 3 or $\frac{"432"}{8}$			M1 ft "their 18" or "their 432"	or $\frac{3}{8}$ × ("144")
		54		A1	
(b)	$99 \times \frac{20}{9} (= 220)$ oe		3	M1 A correct method to find the total nu Friday	umber of jars of jam sold on
	("220" – "176") ÷ "176"			M1 ft "their 176" or "220" – (320 – "the	ir 144") from part(a)
				Allow"176"÷("220"–"176") or "220"–	$"176" = \frac{1}{n} \times "176"$
		4		A1	
(c)	$\frac{3.50-3.20}{3.20} \times 100$ oe		2	M1 allow $\frac{3.50}{3.20}$ [=1.09] or $\frac{3.50}{3.20} \times 100$) allow 9.4% Allow awrt
				0.094	
		9.375		A1 Allow 9.38 ISW	
(d)	5.10 ÷ 1.0625		3	M2 for $5.10 \div 1.0625$ oe Allow $x + 0.06$ (M1 for $106.25\% = 5.10$ oe Allow x	
		4.8(0)		A1 Must not come from incorrect work	ing.
		(euros)			
					Total 12 marks

2 v

5 (a)		Enlargement	3	B1 Allow enlarge(d)
		Scale factor 2		B1 allow alternatives eg Allow 2 times larger but not 2 times smaller
		Centre $(0,0)$		B1 Allow around the origin. oe
(b)		Correct	2	B2 for a fully correct reflection. (B1 for a reflection in any vertical
		reflection		line)
(c)	$ \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 3 & 3 & 1 \end{pmatrix} $ oe		3	M1 for setting up correct matrix and for intention to multiply matrices in the correct order with at least 2 correct entries in answer. Implied by trapezium <i>D</i> drawn correctly. Implied by 2 correct points plotted
	$ \begin{bmatrix} -2 & -2 & -4 & -4 \\ -2 & -3 & -3 & -1 \end{bmatrix} $			A1 correct matrix. Pairs can be in any order. Implied by trapezium <i>D</i> drawn correctly
		trapezium D		A1 trapezium D drawn correctly
(d)	$\frac{1}{2} \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix} \mathbf{or}$		3	M1 for the inverse of matrix M or for one correct row or column in the answer
	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -2 & -2 & -4 & -4 \\ -2 & -3 & -3 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 4 & 4 \\ 4 & 6 & 6 & 2 \end{pmatrix} $			
	$(2 \ 0) \begin{bmatrix} 1(-1 \ 0) \end{bmatrix}$			M1 for fully correct calculations shown or for 3 correct entries in
	$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix} \end{bmatrix} \text{or} $ $-2a - 2b = 2 \qquad -2c - 2d = 4$			the answer or Allow $\begin{bmatrix} \frac{1}{2} \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ or
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Different letters may be used
	-4a - 3b = 4 $-4c - 3a = 6$			
	-4a - b = 4 $-4c - d = 2$			A 1 C 11
		$ \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix} $		A1 fully correct
				Total 11 marks


6 (a)		(-4, 3)	2	B2 (B1 for one correct coordinate or for $(3, -4)$ or for $\begin{pmatrix} -4 \\ 3 \end{pmatrix}$) Allow $x = -4$ $y = 3$
(b)	$[AB/CD =]$ $\sqrt{(5-7)^2 + (4-1)^2} / \sqrt{("8"-"-4")^2 + ("8"-"3")^2} (=13)$ $[AC =] \sqrt{("-4"-5)^2 + ("3"-4)^2} = (\sqrt{82} = 9.05)$ $[BD =]$ $\sqrt{("8"-7)^2 + ("8"-1)^2} (= \sqrt{306} = 3\sqrt{34} = 17.49)$		5	M2 for 2 of these oe Correct method seen (ft through their coordinates of C and D ("-4" + 12, "3" + 5))or correct answer. Ignore working if they have $[AB/CD =]13$ (M1 for correct method to find one side) Condone if not labelled Alternative: N.B. Alt using coordinate geometry M2 for 2 of: rectangle = 12×5 (= 60), $0.5 \times 9 \times 1$ (=4.5), $0.5 \times (5+1) \times 3(=9)$, $0.5 \times 12 \times 5(=30)$
	Eg cos $\angle BCA = \left(\frac{"82" + 5^2 - "13^2"}{2 \times "\sqrt{82}" \times 5}\right) = \frac{-62}{10\sqrt{82}}$ oe or			(Allow M1 for finding one of the areas) M1 For a correct statement, ft their lengths if clearly labelled (allow on a diagram), to enable either angle BCA or angle
	$\cos \angle ABC = \left(\frac{"13"^2 + 5^2 - "82"}{2 \times "13" \times 5}\right) \left[= \frac{112}{130} \right] \text{ oe } \mathbf{or}$			ABC or angle BAC to be found or area of all 4 shapes needed to find area of shaded shape. $\angle BCA = 133.2 \ \angle ABC = 30.5 \ \angle BAC = 16.27$ Allow use of right angled triangles eg
	$\cos \angle BAC = \left(\frac{"82" + "13"^2 - 5^2}{2 \times "13" \times \sqrt{82}}\right) \left[= \frac{226}{26\sqrt{82}} \right] \text{ oe}$			$A = 90 - \tan^{-1} \frac{12}{5} - \tan^{-1} \frac{1}{9} [=16.27]$
	Area of half parallelogram = $0.5 \times 5 \times "13" \times \sin("30.5")$ or $0.5 \times 5 \times "13" \times \sin("149.5")$ (=16.5)			M1 correct area formula for half parallelogram, ft their angle and sides if clearly labelled(allow on a diagram), or "60" – "30" – "9" – "4.5" (=16.5)
		33 (cm ²)		A1 32.9 – 33

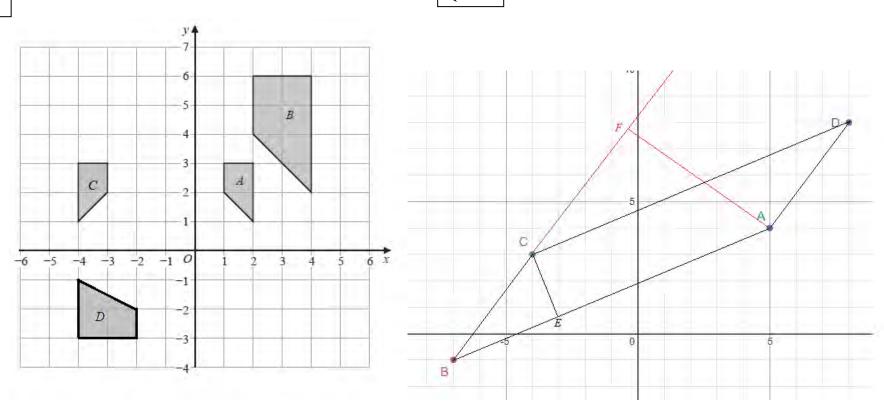
		NB: A correct answer within the given range with no obvious incorrect working gains full marks.
		Total 7 marks

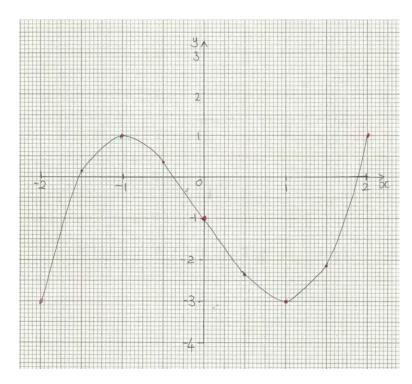

part (b) There are other ways see next page for most common

		1	
Alt 1 (b)	$[AB/CD =] \sqrt{(57)^2 + (41)^2} (=13)$		M1 Condone not labelled
	[Line AB] $y-4 = \frac{4-1}{5-7}(x-5)$ oe $\Rightarrow y = \frac{5}{12}x + \frac{23}{12}$		M1 Correct method to find the equation of the line. Allow use of point <i>B</i>
	[Line <i>CE</i>] $y - "3" = -"\frac{12}{5}"(x - "-4")$ oe $\Rightarrow y = -\frac{12}{5}x - \frac{33}{5}$		M1 Correct method to find the equation of the line.
	Solving gives $x = -\frac{511}{169}$ $y = \frac{111}{169}$ $CE = \sqrt{("3"-"111/169")^2 + ("-4"-"-511/169")^2}$		M1 Correct method to find the length of <i>CE</i> using their values for <i>x</i> and <i>y</i> which must be stated. If <i>x</i> and <i>y</i> are incorrect working must be seen
	[=2.538]		
	Area = 13×2.538	33 (cm ²)	A1
Alt 2 (b)	[Line BC] $y - 1 = \frac{3 - 1}{-4 - 7}(x - 7)$ oe $\left[\Rightarrow y = \frac{4}{3}x + \frac{25}{3} \right]$		M1 Correct method to find the equation of the line. Allow use of point <i>C</i>
	[Line AF] $y-4=-"\frac{3}{4}"(x-"5")$ oe $\left[\Rightarrow y=-\frac{3}{4}x+\frac{31}{4}\right]$		M2 Correct method to find the equation of the line. Allow use of point $D("-4" + 12, "3" + 5)$ $\left[\Rightarrow y = -\frac{3}{4}x + 14\right]$
	Solving gives $x = -\frac{7}{25}$ $y = \frac{199}{25}$ $AF = \sqrt{\left(5 - \frac{7}{25}\right)^2 + \left(4 - \frac{199}{25}\right)^2} [= 6.6 \dots]$		M1 Correct method to find the length of AF using their values for x and y which must be stated. If x and y are incorrect working must be seen Use of D gives $x = 68/25$ and $y = 299/25$ $\sqrt{(8 - (8 / 25))^2 + (8 - (299 / 25))^2}$
	Area = 5×6.6	33 (cm ²)	A1
Alt 3	$[2 \times 0.5] \times (5(-1 - "3") - "4"(-7 + 4) - (-7 \times "3" - 4)) $		4 ft their coordinates from part(a)

Alt 3	0.5 (5×-1+-7×"3"+"-4"×"8"+"8"×4)- (4×-7+-1×"-4"+"3"×"8"+"8"×5)		33	$\pm \left[-5 - 15 + 28 - 16 - 21 - 4 \right]$ (M1 2 correct values, M2 3 correct values, M3 4 correct values) M4 ft their coordinates from part(a) and D ("-4" + 12, "3"+ 5) $\pm \left[(-5 - 21 - 32 + 32) - (-28 + 4 + 24 + 40) \right]$ (M1 2 correct values, M2 3 correct values, M3 4 correct values) A1
7 (a) (b)	-3, 1, -1, -2.38 (allow -2.375)	Correct curve drawn		B3 for all 4 correct values, B2 for 3 correct, B1 for 2 correct M1 Attempts to plot at least 7 of their points with at least 5 correct ± 1 small square. (Allow if curve goes through the points) M1 drawing a smooth curve through at least 5 of the plotted points. Do not allow if they use straight lines. Allow ± 1 square from their point. A1 A fully correct curve. All Points plotted correctly, ± 1 square, (allow their point $(0.5, a)$) provided $-2 < a < -2.5$ with a smooth curve through all the points.
(c)		-1.4, -0.6, 1.9	2	M1 for drawing line or showing marks on graph only at $y = 0.5$ A1cao dep on M1 no incorrect extras given.
(d)		-2	2	M1 for a tangent drawn at $x = 0.5$ A1 dep on M1 Total 10 marks

x									
у	-3	0.13	1	0.38	-1	-2.38	-3	-2.13	1


				SC If using $x = "$ their 17" the max they can get is B3 B3 for 5 or 6 regions correct. B2 for 3 or 4 regions correct. B1 for 2 correct regions.
(b)	24 - x + x + 25 - x + 8 = 40 oe		4	M1 a correct equation for number of elements in set <i>C</i> ft their Venn diagram, if there are no blanks, providing working is shown and the equation contains <i>x</i>
	x = 17	17		A1
	("17" – 2) +(21 – "17") +(4 + "17") +			M1 dep on M1 a correct equation using their value of x
	(24 – "17") +("17")+ (25 – "17") + 8 + 25			ft their Venn diagram if working is shown
	oe			eg 15 + 4 + 21 + 40 + 25 or 15+ 4 + 21 + 7 + 17 + 8 + 8 + 25
		105		A1 answer of 105 gets full marks
	SC M1M1 for adding all the areas in their Ve			
	Eg $(x-2)$ + $(21-x)$ + $(4+x)$ + $(25-x)$ + $(24$ A2 for 105	(-x) + 8 +	25 oe e	g - 2+ 21 + 4 + 25 + 24 + 8 + 25
(c)		<u>25</u>	2	B2 oe Allow 0.625
		40		(B1 for $\frac{n}{40}$ where $n < 40$ or $\frac{25}{m}$ where $m > 25$)
				Total 10 marks


9	$2r + \frac{120}{360} \times 2\pi r = 5(3+\pi)$		6	M1 correct equation for perimeter of sector <i>AOD</i> Allow 30.7 or better for $5(3 + \pi)$
	$r = \frac{5(3+\pi)}{2+\frac{2}{3}\pi} [=7.5]$			A1 correct value for r – need not be simplified. Allow 30.7 or better for $5(3+\pi)$
	$\angle BOD = 180 - 2(60 - 18) (= 96)$			M1 a correct method to find angle BOD
				eg $360 - 120 - (180 - 2 \times 18)$ NB radians $\frac{8}{15}\pi$
	Area of sector $ORCD = \frac{"96"}{\sqrt{\pi}} \times \pi \times "7.5"^2$			M1 a correct method to find Area of sector OBCD. Ft their value
	Area of sector $OBCD = \frac{"96"}{360} \times \pi \times "7.5"^2$ (=15 π = 47.12)			of r and their $\angle BOD$ eg π "7.5" ² $-\left(\frac{360-96}{360}\right) \times \pi$ "7.5" ²
				NB radians $\frac{1}{2}$ "7.5" ² × $\frac{8}{15}$ π
	Area of triangle $OBD = 0.5 \times 7.5^2 \times \sin^{\circ}96^{\circ}$			M1 a correct method to find the area of the triangle <i>OBD</i> Ft their
	(= 27.97)			value of r and their $\angle BOD$. May use trig to find lengths
	,			and use area = 0.5bh
		19.2 (cm ²)		A1 19.1 – 19.2
				Total 6 marks

10 (a)	$\overrightarrow{AB} = 6\mathbf{b} - 4\mathbf{a}$ oe or		3	M1 correct vector for \overrightarrow{AB} or \overrightarrow{BA} May be embedded in an
	$\overrightarrow{BA} = 4\mathbf{a} - 6\mathbf{b}$ oe			expression for \overrightarrow{OC}
	$\overrightarrow{OC} = 4\mathbf{a} + \frac{3}{4}(\mathbf{6b} - 4\mathbf{a''})$ or			M1 Allow $\overrightarrow{OC} = 4\mathbf{a} + \frac{3}{4}$ ("their \overrightarrow{AB} ") or $\overrightarrow{OC} = 6\mathbf{b} + \frac{1}{4}$ ("their \overrightarrow{BA} ")
	$\overrightarrow{OC} = 6\mathbf{b} + \frac{1}{4}("4\mathbf{a} - 6\mathbf{b}")$			if $\overrightarrow{AB} / \overrightarrow{BA}$ is clearly labelled.
		a + 4.5 b		Al oe
(b)	$\overrightarrow{PT} = \mathbf{a} + \frac{3}{2}("6\mathbf{b} - 4\mathbf{a}")(= -5\mathbf{a} + 9\mathbf{b})$		4	M1 Implied by $\frac{9}{\lambda} = \frac{-5}{-3}$ ft their \overrightarrow{AB}
	$\overrightarrow{PQ} = -3\mathbf{a} + \lambda \mathbf{b}$ or			M1 One correct vector. Allow $\frac{6n}{n+1}$ or 6λ for λ
	$\overrightarrow{OQ} = \lambda \mathbf{b}$ oe			Implied by $\frac{9}{\lambda} = \frac{-5}{-3}$
	$\overrightarrow{PQ} = \frac{3}{5}("-5\mathbf{a} + 9\mathbf{b}")(= 5.4\mathbf{b} - 3\mathbf{a}) \text{ or}$ $\overrightarrow{OQ} = 3\mathbf{a} + \delta("-5\mathbf{a} + 9\mathbf{b}")$			M1 A 2^{nd} correct vector for PQ or a 2^{nd} correct vector for QQ ft their \overline{PT}
	$\overrightarrow{OQ} = 3\mathbf{a} + \delta("-5\mathbf{a} + 9\mathbf{b}")$			
				or 5.4 : 0.6 or $\frac{9}{\lambda} = \frac{-5}{-3}$ oe $\lambda = \frac{27}{5}$
		9	_	A 1 A 11 ov. 0 . 1
		9		A1 Allow 9 : 1
		1		Total 7 marks

11 (a)			1.5	1	B1 oe			
(b)			5	1	B1			
(c)	$y = \frac{x-7}{3-2x} \text{and}$ $y(3-2x) = x-7$ $3y+7 = x+2xy$	$x = \frac{y - 7}{3 - 2y} \text{ and}$		3	M1 implied by $\frac{3x+7}{1+2x}$ or $\frac{3y+7}{1+2y}$ oe			
	y(3-2x)-x-7	x(3-2y) = y - 1						
	3y + 7 = x + 2xy	3x + 7 = y + 2xy			M1 grouping together terms in x or terms in y implied by $\frac{3x+7}{1+2x} \text{ or } \frac{3y+7}{1+2y} \text{ oe Allow 1 sign error}$			
			$g^{-1}(x) = \frac{3x+7}{1+2x}$		A1 oe Do not ISW allow $g^{-1}: x \mapsto$ Do not allow $y =$			
(d)	x - 7 = (3 - 2x)(2x + 1)			4	M1 for equating functions and removing denominator			
	$4x^2 - 3x - 10 (= 0)$ oe	;			M1 correct 3 term quadratic equation			
	(4x+5)(x-2) (=0)				M1 correct method to solve their 3 term quadratic equation.			
					By factorisation brackets must expand to give 2 out of 3 terms			
			-1.25, 2		correct or fully correct substitution into fully correct formula. A1 oe A correct answer with no incorrect working gains 4/4			
(e)(i)	$4 \times (-1.5)^3 + 4 \times (-1.5)^4$	$5)^2 - 5 \times -1.5 - 3.09$	1.23, 2	2	M1			
(-)(-)	` ' '	<u> </u>		_	A1 must show that substitution of -1.5 gives solution of zero			
() (!!)	$4 \times (-1.5)^3 + 4 \times (-1.5)^2 - 5 \times -1.5 - 3 = 0$ oe				AT must show that substitution of 1.5 gives solution of zero			
(e)(ii)	, the state of the							
		giving a first term of $2x^2$		4	M1 for $(2x+3)(2x^2)$ or synthetic division			
	$(2x+3) \overline{\smash{\big)}\!$	<u></u>			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	$(2x+3)4x^3+4x^2-5$	5x-3			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	Quotient $2x^2 - x - 1$				M1 Allow $4x^2 - 2x - 2$			
	(2x+1)(x-1)(=0) oe				M1 Correct factorisation of their quotient. For synthetic			
		,			division allow $(4x+2)(x-1)(=0)$ or $(2x+1)(2x-2)(=0)$			
					or $2(2x+1)(x-1)(=0)$ but we will condone missing 2			
					Allow correct use of quadratic formula for their quadratic			
					but working must be seen. Condone 2^2 for $(-2)^2$			
			-1.5, -0.5, 1		A1 All previous method marks must be awarded			
					Total 15 marks			

Q6

